Quinolizidine Alkaloid Biosynthesis in Lupins and Prospects for Grain Quality Improvement
نویسندگان
چکیده
Quinolizidine alkaloids (QAs) are toxic secondary metabolites found within the genus Lupinus, some species of which are commercially important grain legume crops including Lupinus angustifolius (narrow-leafed lupin, NLL), L. luteus (yellow lupin), L. albus (white lupin), and L. mutabilis (pearl lupin), with NLL grain being the most largely produced of the four species in Australia and worldwide. While QAs offer the plants protection against insect pests, the accumulation of QAs in lupin grain complicates its use for food purposes as QA levels must remain below the industry threshold (0.02%), which is often exceeded. It is not well understood what factors cause grain QA levels to exceed this threshold. Much of the early work on QA biosynthesis began in the 1970-1980s, with many QA chemical structures well-characterized and lupin cell cultures and enzyme assays employed to identify some biosynthetic enzymes and pathway intermediates. More recently, two genes associated with these enzymes have been characterized, however, the QA biosynthetic pathway remains only partially elucidated. Here, we review the research accomplished thus far concerning QAs in lupin and consider some possibilities for further elucidation and manipulation of the QA pathway in lupin crops, drawing on examples from model alkaloid species. One breeding strategy for lupin is to produce plants with high QAs in vegetative tissues while low in the grain in order to confer insect resistance to plants while keeping grain QA levels within industry regulations. With the knowledge achieved on alkaloid biosynthesis in other plant species in recent years, and the recent development of genomic and transcriptomic resources for NLL, there is considerable scope to facilitate advances in our knowledge of QAs, leading to the production of improved lupin crops.
منابع مشابه
Quinolizidine alkaloid biosynthesis: recent advances and future prospects
Lys-derived alkaloids, including piperidine, quinolizidine, indolizidine, and lycopodium alkaloids, are widely distributed throughout the plant kingdom. Several of these alkaloids have beneficial properties for humans and have been used in medicine. However, the molecular mechanisms underlying the biosynthesis of these alkaloids are not well understood. In the present article, we discuss recent...
متن کاملRisk assessment of the occurrence of alkaloids in lupin seeds - BfR Opinion No 003/2017, 27 March 2017
The levels of quinolizidine alkaloids in lupin seeds vary depending on the botanical and geographical origin of the lupin variety from which theyderive. “Bitter lupins” produce seeds which have a bitter taste due to the higher levels of quinolizidine alkaloids they contain. Bitter lupin seeds are not suitable for human consumption without appropriate pre-treatment (“debittering”). Lupin varieti...
متن کاملChemical Defense of Lupins. Mollusc-Repellent Properties of Quinolizidine Alkaloids
Polyphagous molluscs such as H elix pom atia and Arion rufus generally do not feed on plants containing alkaloids. O f 19 species tested 10 species were totally avoided, the other 9 species were less attacked than Lactuca sativa, which was readily taken. Plants containing quinolizidine alkaloids were studied in detail. Those species with the a-pyridone alkaloids cytisine and N-methylcytisine we...
متن کاملEnzymatic Synthesis of Quinolizidine Alkaloids in Lupin Chloroplasts
The enzymatic sequence responsible for the biosynthesis of tetracyclic quinolizidine alkaloids could be localized in chloroplasts isolated from Lupinus polyphyllus leaves and L. albus seedlings by differential centrifugation. Upon feeding of cadaverine to isolated chloroplasts lupanine is produced as the main alkaloid. Chloroplasts treated with digitonine produce sparteine and 17oxosparteine in...
متن کاملDiurnal Fluctuation of Quinolizidine Alkaloid Accumulation in Legume Plants and Photomixotrophic Cell Suspension Cultures
Lupinus, Baptisia, Sarothamnus, Diumal Rhythm, Photomixotrophic Cell Suspension Cultures, Quinolizidine Alkaloids Fluctuations of quinolizidine alkaloid content in leaflets of Lupinus polyphyllus, L. hartwegii, Baptisia australis, and Sarothamnus scoparius were studied over a 36 h period. The alkaloid contents reached their maximum at noon or early afternoon, and their minimum during the night....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017